標題:
F.4 AM Coordinate System (15分)
發問:
Given a triangle, which area = ((4r+2)/((r+1)^2)), where r>0 find maximum area & minimum area. 更新: 唔用微積分得唔得? 更新 2: 我都唔知-,- 期終考試最後果一題...
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
Let A is triangle area A=(4r+2)/(r+1)^2 dA/dr=(r+1)^2(4)-(4r+2)(2)(r+1)/(r+1)^4 dA/dr=4(r^2+2r+1)-2(4r^2+4r+2r+2) dA/dr=(r+1)[(4(r+1)-2(4r+2)]/(r+1)^4 dA/dr=(r+1)(4r+4-8r-4)/(r+1)^4 dA/dr=(-4r)/(r+1)^3 dA/dr=0 (-4r)=0 r=0 又說r唔可以等於0 anyway d^2A/dr^2=[(r+1)^3(-4)-(-4r)(3)(r+1)^2]/(r+1)^6 d^2A/dr^2=(r+1)^2[(-4)(r+1)-(-4r)(3)]/(r+1)^6 d^2A/dr^2=(8r-4)/(r+1)^4 when r=0 d^2A/dr^2=[8(0)-4]/(0+1)^4 d^2A/dr^2 is less than 0 It has a maximum area [4(0)+2]/(0+1)^2 =2 2008-06-18 15:11:46 補充: What is the answer????? 2008-06-18 17:04:29 補充: sorry, the minimum area is 2
其他解答:
留言列表